If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effect of Aerosol Surface Lubricants on the Abundance and Richness of Selected Forest Insects Captured in Multiple-Funnel and Panel Traps

(PDF 650.4kb)

Although the PDF version of the article is freely available, the article is available in other formats to subscribers of the journal or for purchase.

$28.00 plus tax (Refund Policy)

Buy Article:


Survey and detection programs for native and exotic forest insects frequently rely on traps baited with odorants, which mediate the orientation of target taxa (e.g., the southern pine beetle, Dendroctonus frontalis Zimmermann) toward a resource (e.g., host material, mates). The influence of trap design on the capture efficiency of baited traps has received far less empirical attention than odorants, despite concerns that intercept traps currently used operationally have poor capture efficiencies for some target taxa (e.g., large woodborers). Several studies have recently demonstrated that treating traps with a surface lubricant to make them “slippery” can increase their capture efficiency; however, previously tested products can be expensive and their application time-consuming. The purpose of this study was to evaluate the effect of alternate, easier to apply aerosol lubricants on trap capture efficiency of selected forest insects. Aerosol formulations of Teflon and silicone lubricants increased both panel and multiple-funnel trap capture efficiencies. Multiple-funnel traps treated with either aerosol lubricant captured significantly more Monochamus spp. and Acanthocinus obsoletus (Olivier) than untreated traps. Similarly, treated panel traps captured significantly more Xylotrechus sagittatus (Germar), Ips calligraphus (Germar), Pissodes nemorensis (Germar), Monochamus spp., A. obsoletus, Thanasimus dubius (F.), and Ibalia leucospoides (Hochenwarth) than untreated traps. This study demonstrates that treating multiple-funnel and panel traps with an aerosol dry film lubricant can increase their capture efficiencies for large woodborers (e.g., Cerambycidae) as well as bark beetles, a weevil, a woodwasp parasitoid and a bark beetle natural enemy (Coleoptera: Cleridae).

Keywords: Cerambycidae; attractant; monitoring; trap design; woodborer

Document Type: Research Article

DOI: http://dx.doi.org/10.1603/EC11044

Publication date: August 1, 2011

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more