If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Influence of Posttreatment Temperature on the Toxicity of Insecticides Against Diaphorina citri (Hemiptera: Psyllidae)

 Download
(PDF 89.3kb)
 

Although the PDF version of the article is freely available, the article is available in other formats to subscribers of the journal or for purchase.


$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is one of the most important pests of citrus worldwide because it efficiently vectors three bacteria in the genus Candidatus Liberibacter that cause the devastating citrus greening disease (huanglongbing). Current management practices for this insect pest rely on multiple sprays of foliar insecticides and one or two applications of soil systemic insecticides per season. Effective psyllid and disease management in Florida requires insecticide applications throughout the entire season over wide ranging temperature and environmental conditions. Using a petri dish bioassay technique, the effect of posttreatment temperature (range, 17–37°C) on the toxicity of selected organophosphate (chlorpyrifos and dimethoate), carbamate (carbaryl), avermectin (abamectin), pyrethroid (bifenthrin, zeta-cypermethrin, fenpropathrin, and lambda-cyhalothrin), and neonicotinoid (acetamiprid, imidacloprid, and thiamethoxam) insecticides was evaluated against adult D. citri. The toxicity of both organophosphates showed a positive temperature correlation within the 17–37°C range. Similarly, carbaryl (carbamate) and abamectin (avermectin) exhibited increased toxicity with increasing temperature from 17 to 37°C, with abamectin showing higher overall temperature-dependent toxicity against D. citri adults than carbaryl. With the exception of bifenthrin, which showed a positive temperature-dependent toxicity correlation between 27 and 37°C, all other pyrethroids tested exhibited a negative correlation over the temperature range examined. The toxicity of fenpropathrin and lambda-cyhalothrin dramatically decreased with increasing temperature from 17 to 37°C. The neonicotinoids imidacloprid and thiamethoxam exhibited a mixed response to increasing temperature, whereas acetamiprid showed a positive temperature correlation. However, all three neonicotinoids showed positive temperature-dependent toxicity correlations against D. citri adults over the temperature range tested. These data will enable citrus growers to choose the most effective insecticides for D. citri control from the various classes currently available depending on the prevailing temperature conditions.

Keywords: Diaphorina citri; citrus; citrus greening disease; huanglongbing; temperature-dependent toxicity

Document Type: Research Article

DOI: http://dx.doi.org/10.1603/029.102.0229

Publication date: April 1, 2009

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more