Impact of Duration Versus Frequency of Probing by Homalodisca vitripennis (Hemiptera: Cicadellidae) on Inoculation of Xylella fastidiosa

$28.00 plus tax (Refund Policy)

Buy Article:


Successful infection of the plant pathogenic bacterium Xylella fastidiosa (Wells) from an infected plant to a new host involves three main steps: 1) acquisition of the bacterium by a vector; 2) inoculation of a noninfected host plant by the vector; and 3) establishment of sufficient titers of X. fastidiosa in the host plant to sustain a chronic infection. Understanding the basic biology of the transmission process is a key to limiting the spread of plant diseases induced by X. fasdidiosa and reducing agricultural losses, especially those experienced in California since the introduction of a new vector, Homalodisca vitripennis (Germar) (Hemiptera, Cicadellidae) (formerly H. coagulata Say), the glassy-winged sharpshooter. In this study, H. vitripennis adults that acquired X. fastidiosa were allowed access to chrysanthemum plant cuttings for 30, 60, 90, or 120 min. The numbers of X. fastidiosa acquired (i.e., cells present in the insect foregut) and the number inoculated to the plant cuttings were separately determined using quantitative real-time polymerase chain reaction (PCR). In addition, the number of times glassy-winged sharpshooter stylets probed plant cuttings and the amount of time glassy-winged sharpshooter spent actively ingesting were monitored using video surveillance. Linear regression did not indicate a relationship between the number of X. fastidiosa cells inoculated into the plant cutting and either the titer of pathogen present in the insect or amount of time spent ingesting per probe. However, the number of probes significantly influenced the number of X. fastidiosa cells inoculated. Due to the highly variable nature of transmission, our model could not account for all observed variation as indicated by low R 2 values. However, our results suggest that the mechanism of transmission is dependent on probing behaviors more than ingestion duration.

Keywords: Hemiptera; Pierce’s disease; quantification; real-time polymerase chain reaction; transmission

Document Type: Research Article

Publication date: August 1, 2008

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more