If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effects of Temperature and Molecular Oxygen on the Use of Atmospheric Pressure Plasma as a Novel Method for Insect Control

$28.00 plus tax (Refund Policy)

Buy Article:


Helium atmospheric pressure plasma discharge (APPD) was previously shown to have insecticidal activity with a possible site of action on the insect nervous, neuromuscular system, or both. In the current study, methods to increase the insecticidal activity of plasma by using increased APPD temperature and the introduction of molecular oxygen were investigated for the first time. An increase in the helium plasma temperature from 37 to 50°C increased the insecticidal activity of plasma for the control of the German cockroach, Blattella germanica (L.); western flower thrips, Frankliniella occidentalis (Pergande); and citrus mealybug, Planococcus citri (Risso). This increase in activity could not be explained by the increase in air temperature alone, and it suggests that the enhanced insecticidal activity resulted from increased ionization of the APPD and ion bombardment of the insect. Emission spectroscopy showed that the introduction of 0.5% oxygen into helium plasma produced ionic molecular oxygen at 559.7 and 597.3 nm. The introduction of oxygen to the APPD greatly increased the insecticidal activity of plasma for the citrus mealybug but not the German cockroach or western flower thrips. For the mealybug as an example, the mortality of a 60-s exposure of 37°C helium plasma was 0% at 1 h after exposure and 100% under the same conditions after the introduction of oxygen. It seems that increases in temperature and the introduction of oxygen even at low levels can increase the insecticidal activity of plasma to varying degrees depending on the insect species. The symptomology of cockroach death for both hot plasma and plasma containing trace amounts of molecular oxygen continued to suggest that the site of action of APPD is the insect nervous system, neuromuscular system, or both.

Keywords: atmospheric pressure plasma; dielectric barrier discharge; insect control; oxygenated helium plasma; quarantine

Document Type: Research Article

Publication date: April 1, 2008

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more