Toxicity, Uptake, and Transfer Efficiency of Fipronil in Western Subterranean Termite (Isoptera: Rhinotermitidae)

(PDF 503.2 kb)

Although the PDF version of the article is freely available, the article is available in other formats to subscribers of the journal or for purchase.

$28.00 plus tax (Refund Policy)

Buy Article:


The potential horizontal transfer of nonrepellent termiticides has become an important paradigm to control termites in recent years. In this study, 14C-radiolabeled fipronil was used in a series of laboratory experiments to demonstrate the extent and ability of termites to transfer lethal amounts of fipronil to unexposed nestmates. Fipronil is an active and nonrepellent termiticide against western subterranean termites, Reticulitermes hesperus Banks, on sand at relevant doses. It exhibited delayed toxicity with the lowest LD50 ≈ 0.2 ng/termite expressed between day 4 and 7. Both continuous and brief exposures to fipronil-treated sand seriously impaired the termite’s ability to move and respond to a dodecatrienol trail, limiting potential horizontal transfer. In tunneling studies, fipronil prevented termite tunneling at concentrations as low as 0.5 ppm and was nonrepellent even at 500 ppm. Greater than 90% mortality was recorded by day 7 with concentrations ranging from 0.5 to 500 ppm. There was a linear relationship between the time of exposure and uptake of [14C]fipronil when termites were continuously exposed to 0.5, 1.0, and 5.0 ppm for 24 h. However, uptake discontinued when the termites were immobilized. Maximum transfer of fipronil from donors to recipients occurred within the first 24 h. Fipronil was transferred by body contact and trophallaxis did not play a major role in horizontal transfer. In successive transfer studies, there was not enough fipronil on recipients for them to serve as secondary donors and kill other termites. In a linear arena study, there was an inverse relationship between the amount of fipronil on dead termites and their distance from the treated zone. Maximum mortality was observed within 1.5 m from the treated zone. Results in our laboratory studies suggest that horizontal transfer was not a major factor contributing to the efficacy of fipronil in the field.

Keywords: Reticulitermes hesperus; delayed toxicity; nonrepellency; termite movement

Document Type: Research Article

Publication date: April 1, 2007

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more