Seasonal Changes of Methamidophos Susceptibility and Biochemical Properties in Plutella xylostella (Lepidoptera: Yponomeutidae) and Its Parasitoid Cotesia plutellae (Hymenoptera: Braconidae)

$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Methamidophos resistance and acetylcholinesterase (AChE) insensitivity to methamidophos, dichlorvos, and carbofuran were determined in the field populations of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) and its parasitoid Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) collected from the corresponding hosts between October 1998 and December 2003 in Fuzhou and Minhou, Fijian, China. Resistance levels to methamidophos and AChE insensitivity to the three insecticides in the two species of insects were high during autumn and spring and low during summer. Resistance to methamidophos was 15.3- and 12.6-fold higher in resistant F0 parents of P. xylostella and C. plutellae than in their susceptible F11 progeny, respectively. The bimolecular rate constant (k i) values of AChE to methamidophos, dichlorvos, and carbofuran were 4.6-, 6.3-, and 7.7-fold higher in F11 progeny of P. xylostella, and 3.7-, 4.5-, and 3.7-fold higher in F11 progeny of C. plutellae than those in their F0 parents, respectively. Compared with susceptible F11 progeny, the resistance ratios for methamidophos were 4.2–29.8 and 3.8–13.1 in 21 field populations of P. xylostella and C. plutellae, respectively. The k i values of AChE to methamidophos, dichlorvos, and carbofuran were 2.0–21.6-, 3.6–9.5-, and 2.6–9.2-fold higher in F11 progeny of P. xylostella, and 1.8–7.6-, 1.9–4.6-, and 2.2–7.6-fold higher in F11 progeny of C. plutellae than those in 21 field populations, respectively. Significant correlative variations of methamidophos resistance as well as significant correlative variations of k i values of AChE to insecticides between the two species of insects also were found in space and time. The k i values of AChE to insecticides in C. plutellae were far higher than those in P. xylostella. There were no obvious differences in the K m and V max of AChE between F0 parents and F11 progeny of P. xylostella and C. plutellae, respectively. But carboxylesterase activity was 1.6-fold higher in F0 parents of C. plutellae than in F11 progeny, and glutathione S-transferase activity was 1.5-fold higher in F0 parents of P. xylostella than in F11 progeny. The results suggested that the AChE insensitivity to insecticides might play the most important role in methamidophos resistance in the two species of insects. From these results, a spatial and temporal correlative evolution of methamidophos resistance and insensitive AChE was found to exist between P. xylostella and C. plutellae.

Keywords: Cotesia plutellae; Plutella xylostella; biochemical mechanism; correlative variation; resistance

Document Type: Research Article

Publication date: October 1, 2004

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more