Biochemical Characterization of Hydrolytic and Oxidative Enzymes in Insecticide Resistant and Susceptible Strains of the German Cockroach (Dictyoptera: Blattellidae)

$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We have identified resistance mechanisms in the German cockroach, Blattella germanica (L.), for propoxur and chlorpyrifos in strains of cockroaches that display multiresistance to several organophosphate and carbamate insecticides. The resistance mechanisms involve the combined effects of increased oxidative and hydrolytic metabolism and both strains are resistant to chlorpyrifos and propoxur. Experiments designed to test for similarity in metabolic enzymes suggest that, although the mechanisms involve similar processes, the enzymes responsible for insecticide detoxification are different in the two strains. Both resistant strains exhibited enhanced activity toward a-naphtholic esters relative to a standard susceptible strain; however, analysis of the progeny from resistant x susceptible crosses suggests that this general esterase activity is inherited differently than propoxur or chlorpyrifos resistance. Hybrids of the propoxur-resistant strain displayed the highest activity of all cockroaches tested, in contrast to hybrids of the chlorpyrifos-resistant strain, which were similar to the susceptible strain. Native gel electrophoresis of cytosolic preparations provided further evidence for differences in the pattern of hydrolytic enzymes and inheritance of resistance in the two strains. Analysis of components of the cytochrome P450-dependent monooxygenase system and activities toward model substrates indicate that the two resistance mechanisms also involve different oxidative processes. The propoxur-resistant strain displayed significantly higher levels of total cytochrome P450, but no other components were correlated with resistance. In contrast with the chlopyrifos-resistant strain, which was similar to the susceptible strain in all parameters measured, activity toward model substrates was higher in the propoxurresistant strain than in any of the other strains and hybrids tested. Progeny of the susceptible and propoxur resistant crosses displayed similar levels of monooxygenase components to the susceptible strain, indicating that increased oxidative metabolism is a recessive trait in the Baygon-R strain.

Document Type: Research Article

Publication date: August 1, 1992

More about this publication?
  • Journal of Economic Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes articles on the economic significance of insects and is divided into the following sections: apiculture & social insects; arthropods in relation to plant disease; forum; insecticide resistance and resistance management; ecotoxicology; biological and microbial control; ecology and behavior; sampling and biostatistics; household and structural insects; medical entomology; molecular entomology; veterinary entomology; forest entomology; horticultural entomology; field and forage crops, and small grains; stored-product; commodity treatment and quarantine entomology; and plant resistance. In addition to research papers, Journal of Economic Entomology publishes Letters to the Editor, interpretive articles in a Forum section, Short Communications, Rapid Communications, and Book Reviews.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Visit this journal's homepage
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more