Skip to main content

Open Access Comparison beta absorbed dose from 203Hg, 166Ho and 177LU isotopes in cortex and medulla in tree part kidney and integrated kidney using Monte Carlo method

Download Article:

The full text article is available externally.

The article you have requested is supplied via the DOAJ. View from original source.

This article is Open Access under the terms of the Creative Commons CC BY-NC licence.

Background: Large quantities of radiopharmaceuticals prescribed for treatment and diagnosis are excreted through kidney. Therefore, radiation unwanted dose is created in kidney. As a result, exact calculation of prescribed medicine amount is important. In Mird pamphlet, 5 kidneys have considered in ellipsoidal shape that radiopharmaceutical is uniform distributed in them and gamma absorption fraction is calculated and recorded in the tables and the fraction of beta absorption is considered unit. While, kidney has internal organs and radioisotope is not uniform distributed in and beta absorbed fraction is not unit. Material and method: In this research, for the first time kidney is considered integrated shape and for the second time has been considered that it is consisted of three areas, pelvis, medulla and cortex. It is supposed that radiopharmaceutical is distributed in medulla. Then, beta absorbed dose is calculated in medulla and cortex using MCNPX code and is compared with integrated kidney results. Resuts: This research has been showed that beta absorbed dose from 203Hg, 166Ho and 177Lu isotopes in medulla is four times as much as dose in integrated kidney and beta dose in cortex is 0.004 to 0.012 times as much as beta dose in integrated kidney. Conclusion: Internal structure of kidney should be considered in simulation to achieve a more accurate prescribed dose. It is recommended that simulation results of three areas kidney are replaced with integrated kidney to prevent from renal toxicity.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more