If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

On the Cutoff Frequency of Clarinet-Like Instruments. Geometrical versus Acoustical Regularity

$33.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A characteristic of woodwind instruments is the cutoff frequency of their tone-hole lattice. Benade proposed a practical definition using the measurement of the input impedance, for which at least two frequency bands appear. The first one is a stop band, while the second one is a pass band. The value of this frequency, which is a global quantity, depends on the whole geometry of the instrument, but is rather independent of the fingering. This seems to justify the consideration of a woodwind with several open holes as a periodic lattice. However the holes on a clarinet are very irregular. The paper investigates the question of the acoustical regularity: an acoustically regular lattice of tone holes is defined as a lattice built with T-shaped cells of equal eigenfrequencies. Then the paper discusses the possibility of division of a real lattice into cells of equal eigenfrequencies. It is shown that it is not straightforward but possible, explaining the apparent paradox of Benade's theory. When considering the open holes from the input of the instrument to its output, the spacings between holes are enlarged together with their radii: this explains the relative constancy of the eigenfrequencies.

Document Type: Research Article

DOI: http://dx.doi.org/10.3813/AAA.918480

Publication date: November 1, 2011

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more