Generation of Rayleigh-type Waves on Plate Edges by Laser-initiated Airborne Shock Waves

$33.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The present paper describes the results of the semi-analytical modelling of the interaction of laser-initiated airborne shock waves with the edge of an infinite vertically mounted elastic plate. The impact of the shock wave on the plate edge is approximated by an equivalent edge force resulting from the combined pressure of the incident and reflected shock waves. This force is then represented in the wavenumber-frequency domain by means of Fourier transforms that are carried out numerically. After that the problem is solved using the Green's function method. The resulting frequency spectra and time histories of generated Rayleigh-type wave pulses propagating along the plate edge are calculated for different heights of the laser beam focusing above the plate edge. The obtained theoretical results are compared with the results of the laboratory experiments on laser-initiated air shock wave interaction with an edge of a large vertically mounted Perspex plate that is used for reduced-scale modelling of blast wave interaction with the ground surface. The resonant properties of the accelerometer have been taken into account to describe the received signals. The comparison shows that the obtained semi-analytical results are in good agreement with the experiments.

Document Type: Research Article

DOI: http://dx.doi.org/10.3813/AAA.918343

Publication date: September 1, 2010

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more