Skip to main content

Stability of Acoustic Wave Fronts Propagating in Anisotropic Three-Dimensional Environments

Buy Article:

$33.00 plus tax (Refund Policy)


Extensive numerical modeling of long-range propagation of sound and seismic waves as well as observations of underwater acoustic fields with line arrays reveal that wave fronts are often much more stable and predictable than the rays comprising these wave fronts. This paper considers multiple scattering of sound by environmental inhomogeneities with spatial scales that are small compared to the propagation range but large compared to the wavelength. These inhomogeneities include 3-D variations in sound speed and current velocity that are small compared to the average sound speed, can be either random or deterministic, and are superimposed on an arbitrary slowly varying background. A theoretical explanation of wave-front stability in highly structured environments is achieved by demonstrating that end points of rays launched from a point source and having a given eikonal (phase) are scattered primarily along the wave front corresponding to the same eikonal in an unperturbed environment. The ratio of displacements of the ray end points along and across the unperturbed wave front is proportional to the number of uncorrelated scattering events. The results apply to conventional rays and to horizontal rays describing propagation of adiabatic normal modes in almost-layered media. The origin of relative stability of wave fronts compared to rays is traced back to Fermat's principle.

Document Type: Research Article


Publication date: 2009-11-01

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more