Skip to main content

The Application of Differential Geometry to Ray Acoustics in Inhomogeneous and Moving Media

Buy Article:

$25.00 plus tax (Refund Policy)

Starting from the sound wave equation, we show first that the sound rays in any stationary, subsonically moving medium are the geodesic lines of a Finslerian metric in which the arc length has the physical interpretation of propagation time; thus, it is shown that the sound rays satisfy Fermat's principle of least propagation time. In supersonic currents, the front and back sides of the wave surface must be distinguished between; only the rays corresponding to the front side are the lines of the least propagation time; in contradistinction, those corresponding to the back side are the lines of the greatest propagation time.


Ausgehend von der Schallwellengleichung wird zuerst gezeigt, daß die Schallstrahlen in einem beliebigen stationären, mit Unterschallgeschwindigkeit bewegten Medium geodätische Linien einer Finslerschen Metrik sind, wobei die Bogenlänge physikalisch als Ausbreitungszeit zu inter pretieren ist. Damit ist gezeigt, daß Schallstrahlen dem Fermatschen Prinzip der kürzssten Lauf- zeit gehorchen. In Überschallströmungen muß man zwischen der Vorder- und der Rückseite der Wellenfläche unterscheiden; lediglich die der Vorderseite entsprechenden Strahlen sind Linien kürzester Laufzeit; im Gegensatz dazu sind die der Rückseite entsprechenden Strahlen Linien längster Laufzeit.


A partir de l'équation des ondes acoustiques on montre que les rayons sonores dans un milieu stationnaire en mouvement subsonique sont les lignes géeodésiques d'une métrique de Finsler où la longueur d un arc s'interprète physiquement comme une durée de propagation. On en déduit que les rayons acoustiques obéeissent au principe de Fermat du temps de propagation minimal. Dans le cas des écoulements supersoniques, il faut opéerer une distinction entre le front avant et le front arrière de la surface d'onde: seuls les rayons correspondant au front antérieur sont des lignes de durée de propagation minimale, tandis que les rayons relatifs au front postérieur sont des lignes de durée de propagation maximale.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 1981-01-01

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more