Skip to main content

The Role of the Cysteine-Rich Domain and Netrin-Like Domain of Secreted Frizzled-Related Protein 4 in Angiogenesis Inhibition In Vitro

Buy Article:

$45.00 plus tax (Refund Policy)

Secreted frizzled-related protein 4 (sFRP4) is a Wnt signaling antagonist. Classically, sFRP4 antagonizes the canonical Wnt signaling pathway, resulting in decreased cellular proliferation and increased apoptosis. Recent research from our laboratory has established that sFRP4 inhibits angiogenesis by decreasing proliferation, migration, and tube formation of endothelial cells. The objective of this study was to examine the role of sFRP4's cysteine-rich domain (CRD) and netrin-like domain (NLD) in angiogenesis inhibition. Experiments were carried out to examine cell death and tube formation of endothelial cells after treatment with the CRD and the NLD. The CRD was seen to inhibit tube formation of endothelial cells, which suggests that this domain is important to sFRP4's antiangiogenesis property. In addition, the NLD promoted endothelial cell death and may also inhibit angiogenesis. Furthermore, treatment with the CRD and the NLD increased endothelial intracellular calcium levels. Our findings implicate a role for both the CRD and NLD in angiogenesis inhibition by sFRP4. It is suggestive of alternative antiangiogenic downstream targets of canonical Wnt signaling and a possible importance of the noncanonical Ca2+ Wnt signaling pathway in sFRP4-mediated angiogenesis inhibition.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Angiogenesis; Apoptosis; Calcium signaling; Secreted firzzled-related protein 4 (sFRP4)

Document Type: Research Article

Publication date: 2012-01-01

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more