Skip to main content

The Potential of Protein Disulfide Isomerase as a Therapeutic Drug Target

Buy Article:

$79.00 plus tax (Refund Policy)


Protein disulfide isomerase (PDI) is a multifunctional protein of the thioredoxin superfamily. PDI mediates proper protein folding by oxidation or isomerization and disrupts disulfide bonds by reduction; it also has chaperone and antichaperone activities. Although PDI localizes primarily to the endoplasmic reticulum (ER), it is secreted and expressed on the cell surface. In the ER, PDI is primarily involved in protein folding, whereas on the cell surface, it reduces disulfide bonds. The functions of PDI depend on its localization and the redox state of its active site cysteines. The ER-based functions of PDI are linked to cancer invasion and migration. Surface-associated PDI facilitates the entry of viruses, such as HIV-1, and toxins, such as diphtheria and cholera. Thus, based on its involvement in pathological events, PDI is considered a potential drug target. However, a significant challenge in the therapeutic targeting of PDI is discovering function-specific inhibitors for it. To this end, a wide range of therapeutic agents, such as antibiotics, thiol blockers, estrogenic compounds, and arsenical compounds, have been used, although few are bona fide specific inhibitors. In this review, we will describe the potential of PDI as a therapeutic drug target.

Keywords: Bacitracin; Inhibitor; Juniferdin; Protein disulfide isomerase

Document Type: Research Article


Publication date: October 1, 2012

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more