Skip to main content

Hepatoma-Derived Growth Factor Regulates the Bad-Mediated Apoptotic Pathway and Induction of Vascular Endothelial Growth Factor in Stomach Cancer Cells

Buy Article:

$45.00 plus tax (Refund Policy)

Hepatoma-derived growth factor (HDGF) is highly expressed in tumor cells and may play an important role in the development and progression of carcinomas. However, the molecular mechanism by which HDGF participates in gastric carcinomatosis requires further analysis. In this study, we determined the role of HDGF in tumorigenesis and elucidated the mechanisms of action. To determine aggressive biological behavior, we knocked down HDGF expression with HDGF-specific shRNA in two gastric cancer cell lines. First, using cDNA microarrary, we showed that hepatocyte growth factor (HGF) induced HDGF and confirmed this by Western blotting. HGF increased HDGF in a dose-dependent manner. We also determined whether HDGF induces angiogenic factor, and found the vascular endothelial growth factor (VEGF) was induced by HDGF. Downregulation of HDGF resulted in a decrement of VEGF. HDGF knock-down was found to induce the expression of the proapoptotic protein, Bad, and also inactivate ERK, which in turn led to dephosphorylation of Bad at ser112 and ser136, and induced apoptosis. Transfection with HDGF-siRNA resulted in a decrement of cell proliferation, as determined with a MMT assay. In an in vitro invasion assay, significantly fewer cells transfected with HDGF-siRNA than control cells were able to invade across a Matrigel membrane barrier. Our results suggest that HDGF is involved in cell growth, cell invasion, and apoptosis. These qualities may contribute to the HDGF-associated aggressive biological behavior of gastric cancer and thus serve as a potential target for cancer therapy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Bad; Hepatocyte growth factor (HGF); Hepatoma-derived growth factor (HDGF); Metastasis; Vascular endothelial growth factor (VEGF)

Document Type: Research Article

Publication date: 2010-02-01

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more