Skip to main content

Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases

Buy Article:

$45.00 plus tax (Refund Policy)

Recombinant plant nucleases R-TBN1 and R-HBN1 were isolated to homogeneity and examined for their antitumor effects and cytotoxicity. Although antiproliferative effects of both recombinant nucleases were not significant on the ML-2 cell culture in vitro, the nucleases were strongly cytostatic in vivo after their administration intravenously as stabilized conjugates with polyethylene glycol (PEG). Recombinant nucleases were as effective against melanoma tumors as previously studied pine pollen (PN) and mung bean nucleases and their effects were reached at about 10 times lower concentrations compared to the use of bovine seminal RNase (BS-RNase). Because the recombinant nucleases R-HBN1 and R-TBN1 share only 67.4% amino acid identity and showed only partial immunochemical cross-reactivity, their similar anticancerogenic effects can be mainly explained by their catalytical similarity. Both recombinant nucleases showed lower degree of aspermatogenesis compared to BS-RNAse and PN nuclease. Unlike BS-RNase, aspermatogenesis induced by both recombinant nucleases could not be prevented by the homologous antibody complexes. Owing to relatively low cytotoxicity on the one hand, and high efficiency at low protein levels on the other, recombinant plant nucleases R-HBN1 and R-TBN1 appear to be stable biochemical agents that can be targeted as potential antitumor cytostatics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Anticarcinogenic and antiproliferative nucleases; H. lupulus; Human melanoma; L. esculentum; Nicotiana benthamina; Plant infiltration; Spermatogenesis; Tumor xenografts

Document Type: Research Article

Publication date: 2009-03-01

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more