Skip to main content

TAT Peptide-Modified Liposomes Provide Enhanced Gene Delivery to Intracranial Human Brain Tumor Xenografts in Nude Mice

Buy Article:

$45.00 plus tax (Refund Policy)

In this study, we have investigated the potential of trans-activating transcriptional activator peptide (TATp)-modified liposomes to enhance the delivery of the model gene, plasmid encoding for the green fluorescent protein (pEGFP-N1), to human brain tumor U-87 MG cells in vitro and in an intracranial model in nude mice. The TATp-lipoplexes were characterized at lipid/DNA (+/−) charge ratios of 0.2, 5, 10, and 20 for size analysis and DNA complexation. The size distribution of DNA-loaded TATp-liposomes was narrow and the DNA complexation was firm at lipid/DNA (+/−) charge ratios of 5 and higher. TATp-lipoplexes had demonstrated an enhanced delivery of pEGFP-N1 to U-87 MG tumor cells in vitro at lipid/DNA (+/−) charge ratios of 5 and 10. In vivo transfection of intracranial brain tumors by intratumoral injections of TATp-lipoplexes showed an enhanced delivery of pEGFP-N1 selectively to tumor cells and subsequent effective transfection compared to plain plasmid-loaded lipoplexes. No transfection (green fluorescence of the GFP) was noted in the normal brain adjacent to tumor.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Brain tumor; Gene delivery; Intracranial; Liposome; TAT peptide; U-87 MG astrocytoma

Document Type: Research Article

Affiliations: Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA

Publication date: 2006-08-01

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more