Skip to main content

Open Access MicroRNA142-3p Promotes Tumor-Initiating and Radioresistant Properties in Malignant Pediatric Brain Tumors

Download Article:
(HTML 97.8 kb)
(PDF 883.6 kb)


Primary central nervous system (CNS) atypical teratoid/rhabdoid tumor (ATRT) is an extremely malignant pediatric brain tumor observed in infancy and childhood. It has been reported that a subpopulation of CD133+ cells isolated from ATRT tumors present with cancer stem-like and radioresistant properties. However, the exact biomolecular mechanisms of ATRT or CD133-positive ATRT (ATRT-CD133+) cells are still unclear. We have previously shown that ATRT-CD133+ cells have pluripotent differentiation ability and the capability of malignant cells to be highly resistant to ionizing radiation (IR). By using microRNA array and quantitative RT-PCR in this study, we showed that expression of miR142-3p was lower in ATRT-CD133+ cells than in ATRT-CD133 cells. miR142-3p overexpression significantly inhibited the self-renewal and tumorigenicity of ATRT-CD133+ cells. On the contrary, silencing of endogenous miR142-3p dramatically increased the tumor-initiating and stem-like cell capacities in ATRT cells or ATRT-CD133 cells and further promoted the mesenchymal transitional and radioresistant properties of ATRT cells. Most importantly, therapeutic delivery of miR142-3p in ATRT cells effectively reduced its lethality by blocking tumor growth, repressing invasiveness, increasing radiosensitivity, and prolonging survival time in orthotropic-transplanted immunocompromised mice. These results demonstrate the prospect of developing novel miRNA-based strategies to block the stem-like and radioresistant properties of malignant pediatric brain cancer stem cells.

Keywords: Atypical teratoid/rhabdoid tumor (ATRT); Cancer stem cells (CSCs); Cluster of differentiation 133 (CD133); Pediatric brain tumor; Radiosensitivity

Document Type: Research Article


Affiliations: Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

Publication date: April 9, 2014

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more