Skip to main content

Open Access Salvianolic Acid B Maintained Stem Cell Pluripotency and Increased Proliferation Rate by Activating Jak2‐Stat3 Combined With EGFR‐Erk1/2 Pathways

Download Article:
(HTML 54.6201171875 kb)
(PDF 471.0693359375 kb)


Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are considered the most powerful in terms of differentiating into three-germ-layer cells. However, maintaining self-renewing ESCs and iPSCs in vitro requires leukemia-induced factor (LIF), an expensive reagent. Here we describe a less expensive compound that may serve as a LIF substitute—salvianolic acid B (Sal B), a Salvia miltiorrhiza extract. We found that Sal B is capable of upregulating Oct4 and Sox2, two genes considered important for the maintenance of ESC pluripotency. Our MTT data indicate that instead of triggering cell death, Sal B induced cell proliferation, especially at optimum concentrations of 0.01 nM and 0.1 nM. Other results indicate that compared to non-LIF controls, Sal B-treated ESCs expressed higher levels of several stem cell markers while still maintaining differentiation into three-germ-layer cells after six passages. Further, we found that Sal B triggers the Jak2‐Stat3 and EGFR‐ERK1/2 signaling pathways. Following Sal B treatment, (a) levels of phosphorylated (p)-Jak2, p-Stat3, p-EGFR, and p-ERK proteins all increased; (b) these increases were suppressed by AG490 (a Jak2 inhibitor) and ZD1839 (an EGFR inhibitor); and (c) cytokines associated with the Jak2‐Stat3 signaling pathway were upregulated. Our findings suggest that Sal B can be used as a LIF replacement for maintaining ESC pluripotency while increasing cell proliferation.

Keywords: Embryonic stem cells (ESCs); Induced pluripotent stem cells (iPSCs); Salvia miltiorrhiza; Salvianolic acid B (Sal B)

Document Type: Research Article


Affiliations: Graduate Institute of Immunology, China Medical University, Taichung, Taiwan

Publication date: 2014-04-09

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more