Skip to main content

Open Access Sustained Running in Rats Administered Corticosterone Prevents the Development of Depressive Behaviors and Enhances Hippocampal Neurogenesis and Synaptic Plasticity Without Increasing Neurotrophic Factor Levels

Download Article:
 Download
(HTML 75.115234375 kb)
 
or
 Download
(PDF 485.4873046875 kb)
 
We have previously shown that voluntary running acts as an anxiolytic and ameliorates deficits in hippocampal neurogenesis and spatial learning. It also reduces depression-like behaviors that are normally observed in rats that were administered either low (30 mg/kg) or moderate (40 mg/kg) doses of corticosterone (CORT). However, the protective effects of running were absent in rats treated with a high (50 mg/kg) dose of CORT. We examined whether allowing animals to exercise for 2 weeks prior and/or concurrently with the administration of 50 mg/kg CORT treatment could have similar protective effects. We examined hippocampal neurogenesis using immunohistochemical staining of proliferative and survival cells with the thymidine analogs (BrdU, CIdU, and IdU). In addition, we monitored synaptic protein expression and quantified the levels of neurotrophic factors in these animals as well as performing behavioral analyses (forced swim test and sucrose preference test). Our results indicate that the depressive phenotype and reductions in neurogenesis that normally accompany high CORT administration could only be prevented by allowing animals to exercise both prior to and concurrently with the CORT administration period. These animals also showed increases in both synaptophysin and PSD-95 protein levels, but surprisingly, neither brain-derived neurotrophic factor (BDNF) nor insulin-like growth factor 1 (IGF-1) levels were increased in these animals. The results suggest that persistent exercise can strengthen resilience to stress by promoting hippocampal neurogenesis and increasing synaptic protein levels, thereby reducing the deleterious effects of stress.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Brain-derived neurotrophic factor; Depression-like behavior; Hippocampal neurogenesis; Insulin-like growth factor; Physical exercise; Synaptic plasticity

Document Type: Research Article

Affiliations: Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong

Publication date: 2014-04-09

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more