Skip to main content

Open Access Neural Stem/Progenitor Cell Transplantation for Cortical Visual Impairment in Neonatal Brain Injured Patients

Download Article:
(HTML 57.078125 kb)
(PDF 619.8017578125 kb)
The purpose of this study was to investigate the clinical efficacy of neural stem/progenitor cell (NS/PC) transplantation to treat severe cortical visual impairment (CVI), a sequela of neonatal brain injury. Fifty-two patients with cerebral injury and CVI were randomly divided into two groups: the treatment group (n = 25, with the median age of 18 months) and the control group (n = 27, with the median age of 19.5 months). The treatment group received intracerebroventricular transplantation of human NS/PCs and rehabilitation training. The control group received rehabilitation only. The visual function was assessed by Holt’s method at various time points after transplantation. One in five patients with fundus abnormalities accompanied by blindness regained light perception. The visual functions of 75% of the patients with normal fundus were improved by one level or more in a 2-year follow-up. The median efficacy appeared 60 days posttransplantation. The total effective rate of cell transplantation on visual improvement was 64% (16 patients of 25), among which one blind patient regained light perception, five (31.2%) CVI patients improved by one level, and 10 (62.5%) improved by more than one level. Functional magnetic resonance imaging (fMRI) in a subpopulation of patients showed enhanced signals in the occipital lobe, visual pathway, and apical lobe after transplantation. In the control group, four patients with fundus abnormalities showed no improvement. Nine of 23 CVI patients with normal fundus improved visual function by more than one level. At the 2-year follow-up, no blind patients showed visual improvement. The total effective rate was 33.33% (9 of 27 patients). Among those showing visual improvement in the control group, six patients (66.67%) improved by one level, and three (33.33%) by more than one level. The median efficacy occurred in 365 days. Human NS/PC transplantation is effective to treat patients with severe CVI after neonatal brain injury. Compared with the traditional rehabilitation training, cell transplantation showed not only earlier visual improvement but also higher improvement rates and degrees. This article is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Brain injury; Children; Neural stem/progenitor cells; Transplantation; Visual impairment

Document Type: Research Article

Publication date: 2013-12-17

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more