Skip to main content

Open Access Improvement of Pig Islet Function by In Vivo Pancreatic Tissue Remodeling: A “Human-Like” Pig Islet Structure With Streptozotocin Treatment

Download Article:
(HTML 70.583984375 kb)
(PDF 368.6005859375 kb)
Pig islets demonstrate significantly lower insulin secretion after glucose stimulation than human islets (stimulation index of ∼12 vs. 2 for glucose 1 and 15 mM, respectively) due to a major difference in β- and α-cell composition in islets (60% and 25% in humans and 90% and 8% in pigs, respectively). This leads to a lower rise in 3′,5′-cyclic adenosine monophosphate (cAMP) in pig β-cells. Since glucagon is the major hormonal effector of cAMP in β-cells, we modified pig islet structure in vivo to increase the proportion of α-cells per islet and to improve insulin secretion. Selected doses (0, 30, 50, 75, and 100 mg/kg) of streptozotocin (STZ) were intravenously injected in 32 young pigs to assess pancreatic (insulin and glucagon) hormone levels, islet remodeling (histomorphometry for α- and β-cell proportions), and insulin and glucagon secretion in isolated islets. Endocrine structure and hormonal content of pig islets were compared with those of human islets. The dose of STZ was significantly correlated with reductions in pancreatic insulin content (p< 0.05, r 2 = 0.77) and the proportion of β-cells (p < 0.05, r 2 = 0.88). A maximum of 50 mg/kg STZ was required for optimal structure remodeling, with an increased proportion of α-cells per islet (26% vs. 48% α-cells per islet for STZ <50 mg/kg vs. >75 mg/kg; p < 0.05) without β-cell dysfunction. Three months after STZ treatment (30/50 mg/kg STZ), pig islets were isolated and compared with isolated control islets (0 mg/kg STZ). Isolated islets from STZ-treated (30/50 mg/kg) pigs had a higher proportion of α-cells than those from control animals (32.0% vs. 9.6%, respectively, p < 0.05). After in vitro stimulation, isolated islets from STZ-treated pigs demonstrated significantly higher glucagon content (65.4 vs. 21.0 ng/ml, p < 0.05) and insulin release (144 µU/ml) than nontreated islets (59 µU/ml, p < 0.05), respectively. Low-dose STZ (<50 mg/kg) can modify the structure of pig islets in vivo and improve insulin secretion after isolation.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Islet structure; Pancreatic tissue remodeling; Pig islet xenotransplantation; α-Cell; β-Cell stimulation

Document Type: Research Article

Publication date: 2013-11-05

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more