Open Access Decompression of Inflammatory Edema Along With Endothelial Cell Therapy Expedites Regeneration After Renal Ischemia-Reperfusion Injury

 Download
(HTML 61.6 kb)
 
or
 Download
(PDF 744.2 kb)
 
Download Article:

Abstract:

Increased pressure due to postischemic edema aggravates renal ischemia-reperfusion injury (IRI). Prophylactic surgical decompression using microcapsulotomy improves kidney dysfunction after IRI. Supportive cell therapy in combination with microcapsulotomy might act synergistically protecting kidney function against IRI. The effects of therapeutic endothelial cell application alone and in combination with microcapsulotomy were investigated in a xenogenic murine model of 45-min warm renal ischemia. Renal function and perfusion were determined before as well as 2 and 18 days postischemia by 99mTc-MAG3 imaging and laser Doppler. Histological analysis included H&E stains and immunohistology for endothelial marker MECA-32, cell proliferation marker Ki-67, and macrophage marker F4/80. Histomorphological changes were quantified using a tubular injury score. Ischemia of 45 min led to severe tissue damage and a significant decrease in renal function and perfusion. Microcapsulotomy and cell therapy alone had no significant effect on renal function, while only surgical decompression significantly increased blood flow in ischemic kidneys. However, the combination of both microcapsulotomy and cell therapy significantly improved kidney function and perfusion. Combination therapy significantly reduced morphological injury of ischemic kidneys as determined by a tubular injury score and MECA-32 staining. Macrophage infiltration evidenced by F4/80 staining was significantly reduced. The Ki-67 proliferation index was increased, suggesting a regenerative environment. While microcapsulotomy and cell therapy alone have limited effect on renal recovery after IRI, combination therapy showed synergistic improvement of renal function, perfusion, and structural damage. Microcapsulotomy may create a permissive environment for cell therapy to work.

Keywords: Cell therapy decompression; Endothelial cells; Ischemia-reperfusion injury (IRI); Kidney; Renal function

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368912X658700

Publication date: November 5, 2013

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more