Open Access Effects of Vitamin C on Cytotherapy-Mediated Muscle Regeneration

(HTML 73.4 kb)
(PDF 857.3 kb)
Download Article:


Skeletal muscles are the largest organs in the human body, and several therapeutic trials have been conducted that included stem cell transplantation to regenerate damaged or wasted muscles. It is well known that it is essential to make a favorable microenvironment (stem cell niche) to induce the proper differentiation of the transplanted stem cells. Some drugs, such as losartan (angiotensin II type I blocker), enhance the therapeutic effects of transplanted stem cells by inhibiting fibrosis. In this study, we hypothesized that another substance, vitamin C (ascorbic acid), might improve the niche for stem cell transplantation based on its potent antioxidant effects. In both gross and microscopic observations, vitamin C-depleted mice exhibited more incomplete regeneration of damaged muscles than those treated with vitamin C. Carbonylated protein groups, which are the end products of oxidative stress, were detected in all experimental groups; however, the vitamin C-depleted groups exhibited a more potent positive reaction than that of the vitamin C-supplied groups. The difference is clearer in the presence of transplanted stem cells. Moreover, the serum total vitamin C level and the ascorbic acid (AA) to dehydroascorbic acid (DHA) ratio also were decreased in the presence of transplanted adipose-derived stem cells (ASCs). Taken together, these data can be considered as proof of vitamin C utilization by cells in vivo. The vitamin C-supplied groups displayed more severe fibrosis than that of the vitamin C-depleted groups. Since vitamin C is a major cofactor for the collagen synthesis, its deficiency resulted in reduced fibrosis. In conclusion, we demonstrated that vitamin C not only has a positive effect on adjusting the stem cell niche to boost muscle regeneration but also has an adverse aspect due to its profibrotic effect.

Keywords: Adipose-derived stem cells (ASCs); Antioxidant; Muscle laceration; Stem cell niche; Vitamin C

Document Type: Research Article


Publication date: October 4, 2013

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more