Skip to main content

Open Access Accelerated Expansion of Epidermal Keratinocyte and Improved Dermal Reconstruction Achieved by Engineered Amniotic Membrane

Download Article:
(HTML 75.5625 kb)
(PDF 1186.5927734375 kb)
In this study, we used human amniotic membrane (AM) to prepare a dermal scaffold with intact basement membrane (BM) and good biostability for quick expansion and transplantation of epidermal keratinocytes (EKs). Fresh AM was treated by repeated freeze‐thaw cycles and DNase digestion. This new method was able to cleanse the cell components effectively and retain the BM structure with continuous distributions of laminin, collagen IV, VI, and VII. Subsequently, the acellular amniotic membrane (AAM) was cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) for 5 min, 30 min, and 6 h. With the time of cross-linking prolonging, the mechanical strength and biostability of AAM increased gradually, while its cytotoxicity to EKs also increased. The 5-min cross-linked AAM (5min-AAM) had no significant cytotoxicity with good histocompatibility. The relative cell viability of EKs seeded on the 5min-AAM surface was 367 ± 33% and 631 ± 43% at 7 and 14 days of culture, respectively, both higher than 294 ± 30% and 503 ± 41% of the conventional cell culture dish (CCD) group, and the proportion of P63-positive cells was significantly higher than that of the CCD group on day 7 (54.32 ± 4.27% vs. 33.32 ± 3.18%, p < 0.05). When the 5min-AAM loaded with EKs (EK-AAM) was grafted onto full-thickness skin defects in nude mice, the cells survived well and formed an epidermis similar to normal skin. The new epidermis was thicker, and reconstruction of the dermal structure was good with an intact BM. Four weeks after transplantation, the wound contraction rate in the EK-AAM group was 43.09 ± 7.05%, significantly lower than that in the EK sheet group (57.49 ± 5.93%) and control group (69.94 ± 9.47%) (p < 0.05). In conclusion, repeated freeze‐thaw treatment with appropriate EDC cross-linking offers AAM an intact BM structure with good operability and biostability. It may prove to be an ideal dermal scaffold to promote expansion of EKs in vitro and be transplanted for reconstruction of the dermal structure.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linking; Amniotic membrane (AM); Epidermal keratinocytes (EKs); Freeze‐thaw; Skin substitutes

Document Type: Research Article

Publication date: 2013-10-04

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more