Open Access Therapeutic Potential of Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Mice With Lethal Fulminant Hepatic Failure

 Download
(HTML 78.3 kb)
 
or
 Download
(PDF 1,045.1 kb)
 
Download Article:

Abstract:

Large-scale production and noninvasive methods for harvesting mesenchymal stem cells (MSCs), particularly in elderly individuals, has prompted researchers to find new patient-specific sources for MSCs in regenerative medicine. This study aims to produce MSCs from human induced pluripotent stem cells (hiPSCs) and to evaluate their therapeutic effects in a CCl4-induced mouse model of fulminant hepatic failure (FHF). hiPSC-MSCs have shown MSC morphology, antigen profile and differentiation capabilities, and improved hepatic function in our model. hiPSC-MSC-transplanted animals provide significant benefit in terms of survival, serum LDH, total bilirubin, and lipid peroxidation. hiPSC-MSC therapy resulted in a one-third reduction of histologic activity index and a threefold increase in the number of proliferating hepatocytes. This was accompanied by a significant decrease in the expression levels of collagen type I, Mmp13, Mmp2, and Mmp9 genes and increase in Timp1 and Timp2 genes in transplanted groups. hiPSC-MSCs secreted hepatocyte growth factor (HGF) in vitro and also expressed HGF in evaluated liver sections. Similar results were observed with human bone marrow (hBM)-derived MSCs. In conclusion, our results have demonstrated that hiPSC-MSCs might be valuable appropriate alternatives for hBM-MSCs in FHF liver repair and support liver function by cell therapy with a large-scale production capacity, patient-specific nature, and no invasive MSC harvesting.
More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more