Open Access

A Physiological Pattern of Oxygenation Using Perfluorocarbon-Based Culture Devices Maximizes Pancreatic Islet Viability and Enhances β-Cell Function

Authors: Fraker, Chris A.; Cechin, Sirlene; Álvarez-Cubela, Silvia; Echeverri, Felipe; Bernal, Andrés; Poo, Ramón; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan

Source: Cell Transplantation, Volume 22, Number 9, September 2013 , pp. 1723-1733(11)

Publisher: Cognizant Communication Corporation

Buy & download fulltext article:

Open Access The full text is Open Access.

View now:
HTML 73.8kb 
or
PDF 360.2kb 

Abstract:

Conventional culture vessels are not designed for physiological oxygen (O2) delivery. Both hyperoxia and hypoxia—commonly observed when culturing cells in regular plasticware—have been linked to reduced cellular function and death. Pancreatic islets, used for the clinical treatment of diabetes, are especially sensitive to sub- and supraphysiological O2 concentrations. A result of current culture standards is that a high percentage of islet preparations are never transplanted because of cell death and loss of function in the 24‐48 h postisolation. Here, we describe a new culture system designed to provide quasiphysiological oxygenation to islets in culture. The use of dishes where islets rest atop a perfluorocarbon (PFC)-based membrane, coupled with a careful adjustment of environmental O2 concentration to target the islet physiological pO2 range, resulted in dramatic gains in viability and function. These observations underline the importance of approximating culture conditions as closely as possible to those of the native microenvironment, and fill a widely acknowledged gap in our ability to preserve islet functionality in vitro. As stem cell-derived insulin-producing cells are likely to suffer from the same limitations as those observed in real islets, our findings are especially timely in the context of current efforts to define renewable sources for transplantation.

Keywords: Cell culture; Cell viability; Islets; Oxygenation; Perfluorocarbon (PFC)

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368912X657873

Affiliations: Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA

Publication date: September 11, 2013

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page