Skip to main content

Open Access Intravenous Administration of Human Umbilical Tissue-Derived Cells Improves Neurological Function in Aged Rats After Embolic Stroke

Download Article:
(HTML 59.55859375 kb)
(PDF 461.177734375 kb)
Intravenous administration of human umbilical tissue-derived cells (hUTC) improves neurological function in young adult rats after stroke. However, stroke is a major cause of death and disability in the aged population, with the majority of stroke patients 65 years and older. The present study investigated the effect of hUTC on aged rats after embolic stroke. Rats at the age of 18‐20 months were subjected to embolic middle cerebral artery (MCA) occlusion. Two groups of eight animals each were compared. The investigational group was injected intravenously with 1×107 cells/kg in serum-free culture medium (vehicle) 24 h after stroke onset, and the control group was treated with vehicle only at the same time poststroke. Intravenous administration of hUTC significantly improved neurological functional recovery without reducing infarct volume compared to vehicle-treated aged rats. Additionally, hUTC treatment significantly enhanced synaptogenesis and vessel density in the ischemic boundary zone (IBZ). Moreover, hUTC treatment resulted in a trend toward increased progenitor cell proliferation in the subventricular zone (SVZ) compared to vehicle-treated aged rats. Intravenous administration of hUTC improved functional recovery in aged rats after stroke. The enhancement of synaptogenesis and vessel density may contribute to the beneficial effects of hUTC in the treatment of stroke in the aged animal.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Aged rat model; Cerebral infarct; Human umbilical cord; Stroke recovery; Synaptogenesis

Document Type: Research Article

Affiliations: Department of Neurology, Henry Ford Hospital, Detroit, MI, USA

Publication date: 2013-09-11

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more