Skip to main content

Open Access Lentiviral-Encoded shRNA Silencing of Proteoglycan Decorin Enhances Tendon Repair and Regeneration Within a Rat Model

Download Article:
(HTML 67.9091796875 kb)
(PDF 413.96875 kb)
Injured tendons often heal with scar tissue formation, resulting in uniformly smaller collagen fibrils and poor mechanical properties. The small leucine-rich proteoglycan decorin is well known to regulate fusion of collagen fibrils. Rat patellar tendon cells were transfected with lentiviral-encoded shRNA that specifically targets decorin. Silencing of decorin expression resulted in decreased cell growth. Three types of scaffold-free engineered tendons with different mix ratios of anti-decorin shRNA-treated cells to untreated cells at 1:0 (DCN), 1:1 (MIX), and 0:1 (CON) were utilized for repair of injured patellar tendons. Four weeks after implantation in situ, the MIX group manifested the best results (best coordination of histology, more mature collagen deposition, and larger collagen fibril diameter). Although the DCN group exhibited the largest collagen fibril diameter, this was associated with abnormal shape. Hence, regulation of decorin expression to an appropriate level is crucial for tendon repair with gene therapy.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Decorin; Engineered tendon; Lentivirus; Patellar tendon; Short hairpin RNA (shRNA)

Document Type: Research Article

Affiliations: Center for Stem Cells and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China

Publication date: 2013-09-11

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more