Open Access Enhancing the Adhesion of Hematopoietic Precursor Cell Integrins With Hydrogen Peroxide Increases Recruitment Within Murine Gut

(HTML 79kb)
(PDF 610.4kb)
Download Article:


Hematopoietic stem cells (HSCs) migrate to injury sites and aid in tissue repair. However, clinical success is poor and is partially due to limited HSC recruitment. We hypothesized that HSC pretreatment with H2O2 would enhance their recruitment to injured gut. As HSCs are rare cells, the number of primary cells obtained from donors is often inadequate for functional experiments. To circumvent this, in this study we utilized a functionally relevant cell line, HPC-7. Anesthetized mice were subjected to intestinal ischemia-reperfusion (IR) injury, and HPC-7 recruitment was examined intravitally. Adhesion to endothelial cells (ECs), injured gut sections, and ICAM-1/VCAM-1 protein were also quantitated in vitro. H2O2 pretreatment significantly enhanced HPC-7 recruitment to injured gut in vivo. A concomitant reduction in pulmonary adhesion was also observed. Enhanced adhesion was also observed in all in vitro models. Increased clustering of α4 and β2 integrins, F-actin polymerization, and filopodia formation were observed in pretreated HPC-7s. Importantly, H2O2 did not reduce HPC-7 viability or proliferative ability. HPC-7 recruitment to injured gut can be modulated by H2O2 pretreatment. This may be through increasing the affinity or avidity of surface integrins that mediate HPC-7 homing to injured sites or through stimulating the migratory apparatus. Strategies that enhance hematopoietic stem/progenitor cell recruitment may ultimately affect their therapeutic efficacy.
More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more