Open Access Therapeutic Effect of BDNF-Overexpressing Human Neural Stem Cells (HB1.F3.BDNF) in a Rodent Model of Middle Cerebral Artery Occlusion

(HTML 66.9 kb)
(PDF 754 kb)
Download Article:


Ischemic stroke mainly caused by middle cerebral artery occlusion (MCAo) represents the major type of stroke; however, there are still very limited therapeutic options for the stroke-damaged patients. In this study, we evaluated the neurogenic and therapeutic potentials of human neural stem cells (NSCs) overexpressing brain-derived neurotrophic factor (HB1.F3.BDNF) following transplantation into a rodent model of MCAo. F3.BDNF human NSCs (F3.BDNF) were transplanted into the contralateral side of striatum at 7 days after MCAo, and the transplanted animals were monitored up to 8 weeks using animal MRI and various behavioral tests before they were sacrificed for immunohistochemical analysis. Interestingly, animal MRI results indicate that the majority of contralaterally transplanted neural stem cells were migrated to the peri-infarct area, showing a pathotropism. Transplanted animals exhibited significant behavioral improvements in stepping, rotarod, and modified neurological severity score (mNSS) tests. We also found that the transplanted human cells were colocalized with nestin, DCX, MAP2, DARPP-32, TH, GAD65/67-positive cells, of which results can be correlated with neural regeneration and behavioral recovery in the transplanted animals. More importantly, we were able to detect high levels of human BDNF protein expression, presumably derived from the transplanted F3.BDNF. Taken together, these results provide strong evidence that human neural stem cells (F3.BDNF) are effective in treating stroke animal models.
More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more