Open Access Survival and Functional Restoration of Human Fetal Ventral Mesencephalon Following Transplantation in a Rat Model of Parkinson’s Disease

 Download
(HTML 84.9kb)
 
or
 Download
(PDF 442.3kb)
 
Download Article:

Abstract:

Cell replacement therapy by intracerebral transplantation of fetal dopaminergic neurons has become a promising therapeutic option for patients suffering from Parkinson’s disease during the last decades. However, limited availability of human fetal tissue as well as ethical issues, lack of alternative nonfetal donor cells, and the absence of standardized transplantation protocols have prevented neurorestorative therapies from becoming a routine procedure in patients suffering from neurodegenerative diseases. Improvement of graft survival, surgery techniques, and identification of the optimal target area are imperative for further optimization of this novel treatment. In the present study, human primary fetal ventral mesencephalon-derived tissue from 7- to 9-week-old human fetuses was transplanted into 6-hydroxydopamine-lesioned adult Sprague‐Dawley rats. Graft survival, fiber outgrowth, and drug-induced rotational behavior up to 14 weeks posttransplantation were compared between different intrastriatal transplantation techniques (full single cell suspension vs. partial tissue pieces suspension injected by glass capillary or metal cannula) and the intranigral glass capillary injection of a full (single cell) suspension. The results demonstrate a higher survival rate of dopamine neurons, a greater reduction in amphetamine-induced rotations (overcompensation), and more extensive fiber outgrowth for the intrastriatally transplanted partial (tissue pieces) suspension compared to all other groups. Apomorphine-induced rotational bias was significantly reduced in all groups including the intranigral group. The data confirm that human ventral mesencephalon-derived cells serve as a viable cell source, survive in a xenografting paradigm, and functionally integrate into the host tissue. In contrast to rat donor cells, keeping the original (fetal) neuronal network by preparing only a partial suspension containing tissue pieces seems to be beneficial for human cells, although a metal cannula that causes greater tissue trauma to the host is required for injection. In addition, homotopic intranigral grafts may represent a complimentary grafting approach to the “classical” ectopic intrastriatal target site in PD.

Keywords: Glass capillary; Metal cannula; Neurorestoration; Single cell suspension; Tissue pieces

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368912X654984

Affiliations: Department of Stereotactic and Functional Neurosurgery, Neurocentre, University of Freiburg, Freiburg, Germany

Publication date: July 15, 2013

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more