Skip to main content

Open Access Low Molecular Weight Dextran Sulfate Binds to Human Myoblasts and Improves Their Survival After Transplantation in Mice

Download Article:
(HTML 64.6376953125 kb)
(PDF 764.59375 kb)
Myoblast transplantation represents a promising therapeutic strategy in the treatment of several genetic muscular disorders including Duchenne muscular dystrophy. Nevertheless, such an approach is impaired by the rapid death, limited migration, and rejection of transplanted myoblasts by the host. Low molecular weight dextran sulfate (DXS), a sulfated polysaccharide, has been reported to act as a cytoprotectant for various cell types. Therefore, we investigated whether DXS could act as a “myoblastprotectant” either in vitro or in vivo after transplantation in immunodeficient mice. In vitro, DXS bound human myoblasts in a dose-dependent manner and significantly inhibited staurosporine-mediated apoptosis and necrosis. DXS pretreatment also protected human myoblasts from natural killer cell-mediated cytotoxicity. When human myoblasts engineered to express the renilla luciferase transgene were transplanted in immunodeficient mice, bioluminescence imaging analysis revealed that the proportion of surviving myoblasts 1 and 3 days after transplantation was two times higher when cells were preincubated with DXS compared to control (77.9 ± 10.1% vs. 39.4 ± 4.9%, p = 0.0009 and 38.1 ±8.5% vs. 15.1 ± 3.4%, p = 0.01, respectively). Taken together, we provide evidence that DXS acts as a myoblast protectant in vitro and is able in vivo to prevent the early death of transplanted myoblasts.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Bioluminescence; Cell survival; Dextran sulfate (DXS); Mice; Myoblast transplantation

Document Type: Research Article

Affiliations: Orthopaedic Surgery Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

Publication date: 2013-07-15

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more