Skip to main content

Open Access Therapeutic Superiority for Cartilage Repair by CD271-Positive Marrow Stromal Cell Transplantation

Download Article:
(HTML 74.5546875 kb)
(PDF 496.8740234375 kb)
Recent reports indicated that human isolated CD271+ bone marrow mesenchymal stromal cells (BM-MSCs) have a greater expansion and potential for multipotent differentiation including chondrogenesis than classical plastic adherent (PA) BM-MSCs in vitro. Therefore, we set up a hypothesis that CD271+ MSCs may have a greater chondrogenic potential than PA-MSCs in vitro and in vivo. We investigated the superiority of CD271+ MSCs on chondrogenesis using in vitro expansion and pellet culture system and in vivo rat model of cartilage defect when compared to PA-MSCs. In the in vitro study, CD271+ MSCs showed higher expansion potential and produced larger pellets with higher expressions of chondrogenic genes when compared to the control groups. During the culture, CD271 expression decreased, which resulted in decreased chondrogenesis. In the in vivo study, immunohistochemical staining demonstrated differentiated human chondrocytes identified as double-stained cells with human-specific collagen type 2 and human leukocyte antigen-ABC in CD271+ and PA groups. The number of double-stained cells was significantly higher in the CD271+ group than PA group. Real-time RT-PCR analysis of tissue RNA isolated from the chondral defect site for human-specific chondrogenic markers demonstrated a significantly higher expression in CD271+ group than PA group. Macroscopic examination of chondral defect sites at week 8 revealed glossy white and well-integrated repaired tissues in the CD271+ and PA groups, but not in the PBS group. The average histological score in the CD271+ group was significantly greater than in the other groups. Apoptosis analysis at the cell transplanted site with TUNEL staining showed that the CD271+ group had significantly fewer apoptotic chondrocytes compared with the PA group. These results indicate that CD271+ MSCs have a greater chondrogenic potential than PA-MSCs in both in vitro and in vivo conditions.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Bone marrow (BM); CD271; Cartilage repair; Mesenchymal stem cell (MSC)

Document Type: Research Article

Affiliations: Stem Cell Translational Research, Kobe Institute of Biomedical Research and Innovation, Kobe, Japan

Publication date: 2013-07-15

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more