Skip to main content

Differentiation of Human Adipose Tissue-Derived Stem Cells Into Aggregates of Insulin-Producing Cells Through the Overexpression of Pancreatic and Duodenal Homeobox Gene-1

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

The pancreatic and duodenal homeobox gene 1 (Pdx-1) plays a key role in normal pancreas development and is required for maintaining the normal function of islets. In this study, we examined whether human adipose tissue-derived stem cells (hASCs) could differentiate into insulin-producing cells by exogenously expressed Pdx-1. hASCs were infected with recombinant adenovirus encoding the mouse Pdx-1 gene and differentiated under high-glucose conditions. Insulin transcript levels and the expression of key transcription factors required for pancreatic development including FoxA2, Nkx2.2, and NeuroD were significantly increased by exogenous Pdx-1 overexpression. The expression of Nkx6.1 was found only in Pdx-1-induced hASCs. In addition to transcripts for transcription factors involved in pancreatic development, transcripts for the GLP-1 receptor, glucokinase, and glucose transporter, which are required for maintaining the function of pancreatic β-cells, were observed only in Pdx-1-induced hASCs. Pdx-1-induced hASCs exhibited insulin secretion in response to glucose challenge in vitro. When Pdx-1-induced hASCs were transplanted into streptozotocin (STZ)-induced diabetic mice, they reduced blood glucose levels, although they did not restore normoglycemia. These results demonstrate that the expression of exogenous Pdx-1 is sufficient to induce pancreatic differentiation in vitro but does not induce the fully functional, mature insulin-producing cells that are required for restoring normoglycemia in vivo.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Differentiation; Human adipose tissue-derived stem cells (hASCs); Insulin-producing cells; Pancreatic and duodenal homeobox gene (Pdx-1)

Document Type: Research Article

Affiliations: Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea

Publication date: 01 June 2013

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more