Skip to main content

Open Access Transplantation of Human Embryonic Stem Cell-Derived Pancreatic Endoderm Reveals a Site-Specific Survival, Growth, and Differentiation

Download Article:
(HTML 54.1865234375 kb)
(PDF 936.56640625 kb)


Development of β-cells from human embryonic stem cells (hESCs) could compensate for the shortage of islet donors required for diabetes therapy. Although pancreatic progenitors have been derived from hESCs using various protocols, no fully functional β-cells could be generated in vitro. We evaluated the in vivo growth and differentiation of PDX1+ pancreatic endoderm cells obtained from hESCs. Here we show site-specific survival and differentiation when comparing cells grafted in the epididymal fat pad or the subcutaneous space of NOD/SCID mice after 12 weeks follow-up. Subcutaneous grafts persisted and expressed PDX1 at all time points analyzed, showed PDX1 and NKX6.1 coexpression after 6 weeks, and contained NGN3+ cells after 12 weeks. These findings suggest that further specification along the pancreatic lineage occured at the subcutaneous site. In sharp contrast, in the fat pad grafts only a minority of PDX1+ cells remained after 2 weeks, and no further pancreatic differentiation was observed later on. In addition, contaminating mesenchymal cells present in the implants further developed into cartilage tissue after 6 weeks implantation in the fat pad, but not in the subcutaneous space. These findings indicate that the in vivo microenvironment plays a critical role in the further differentiation of transplanted pancreatic endoderm cells.

Keywords: Human embryonic stem cells (hESCs); PDX1-positive pancreatic endoderm (PPP); Pancreatic progenitor; Transplantation; β-Cells

Document Type: Research Article


Affiliations: Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium

Publication date: 2013-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more