Skip to main content

Open Access Porous Scaffolds Support Extrahepatic Human Islet Transplantation, Engraftment, and Function in Mice

Download Article:
(HTML 59.1 kb)
(PDF 379 kb)


Islet transplantation as a therapy or cure for type 1 diabetes has significant promise but has been limited by islet mass requirements and long-term graft failure. The intrahepatic and intravascular site may be responsible for significant loss of transplanted islets. Nonencapsulating biomaterial scaffolds provide a strategy for architecturally defining and modulating extrahepatic sites beyond the endogenous milieu to enhance islet survival and function. We utilized scaffolds to transplant human islets into the intraperitoneal fat of immunodeficient mice. A smaller human islet mass than previously reported reversed murine diabetes and restored glycemic control at human blood glucose levels. Graft function was highly dependent on the islet number transplanted and directly correlated to islet viability, as determined by the ATP-to-DNA ratio. Islets engrafted and revascularized in host tissue, and glucose tolerance testing indicated performance equivalent to healthy mice. Addition of extracellular matrix, specifically collagen IV, to scaffold surfaces improved graft function compared to serum-supplemented media. Porous scaffolds can facilitate efficient human islet transplantation and provide a platform for modulating the islet microenvironment, in ways not possible with current clinical strategies, to enhance islet engraftment and function.

Keywords: Diabetes; Human; Islets; Scaffold; Transplantation

Document Type: Research Article


Affiliations: Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA

Publication date: May 1, 2013

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more