Skip to main content

Open Access Mesenchymal Stem Cell Population Isolated From the Subepithelial Layer of Umbilical Cord Tissue

Download Article:
 Download
(HTML 43.1201171875 kb)
 
or
 Download
(PDF 561.2255859375 kb)
 
The therapeutic use of stem cells to treat diseases and injuries is a promising tool in regenerative medicine. The umbilical cord provides a rich source of stem cells; we have previously reported a population of stem cells isolated from Wharton's jelly. In this report, we aimed to isolate a novel cell population that was different than those found in Wharton's jelly. We isolated stem cells from the subepithelial layer of the umbilical cord; the cells could be expanded for greater than 90 population doubling and had mesenchymal stem cell characteristics, expressing CD9, SSEA4, CD44, CD90, CD166, CD73, and CD146 but were negative for STRO-1. The cells can be directionally differentiated and undergo osteo-, chondro-, adipo-, and cardiogenesis. In addition, we have identified for the first time that mesenchymal stem cells isolated from umbilical cord can produce microvesicles, termed exosomes. This is the first report describing a stem cell population isolated from the subepithelial layer of the umbilical cord. Given the growth capacity, multilineage potential, and most importantly the low levels of HLA-ABC, we propose that this novel cell isolated from the subepithelial layer of umbilical cord is an ideal candidate for allogeneic cell-based therapy.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Mesenchymal; Stem cells; Umbilical cord lining

Document Type: Research Article

Affiliations: Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, USA

Publication date: 2013-03-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more