Skip to main content

Open Access Establishment of Immortalized Human Amniotic Mesenchymal Stem Cells

Download Article:
 Download
(HTML 61.7 kb)
 
or
 Download
(PDF 606.7 kb)
 

Abstract:

Human amniotic mesenchymal cells (HAM cells) are known to contain somatic stem cells possessing the characteristics of pluripotency. However, little is known about the biology of these somatic cells because isolated HAM cells from amniotic membrane have a limited lifespan. To overcome this problem, we attempted to prolong the lifespan of HAM cells by infecting retrovirus encoding human papillomavirus type16E6 and E7 (HPV16E6E7), bmi-1, and/or human telomerase reverse transcriptase (hTERT) genes and investigated their characteristics as stem cells. We confirmed the immortalization of the four lines of cultured HAM cells for about 1 year. Immortalized human amnion mesenchymal cells (iHAM cells) have continued to proliferate over 200 population doublings (PDs). iHAM cells were positive for CD73, CD90, CD105, and CD44 and negative for CD34, CD14, CD45, and HLA-DR. They expressed stem cell markers such as Oct3/4, Sox2, Nanog, Klf4, SSEA4, c-myc, vimentin, and nestin. They showed adipogenic, osteogenic, and chondrogenic differentiation abilities after induction. These results suggested that immortalized cell lines with characteristics of stem cells can be established. iHAM cells with an extended lifespan can be used to produce good experimental models both in vitro and in vivo.

Keywords: Amniotic; Establishment; Human; Immortalized; Mesenchymal cells; Stem cells

Document Type: Research Article

DOI: http://dx.doi.org/10.3727/096368912X655055

Affiliations: Department of Regenerative Medicine, University of Toyama, Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan

Publication date: February 1, 2013

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
cog/ct/2013/00000022/00000002/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more