Skip to main content

Open Access AG490 Improves the Survivalof Human Myoblasts In Vitro and In Vivo

Download Article:
 Download
(HTML 69.212890625 kb)
 
or
 Download
(PDF 394.3076171875 kb)
 

Abstract:

Cell therapies consist in transplanting healthy cells into a disabled tissue with the goal to repopulate it and restore its function at least partially. In muscular diseases, most of the time, myoblasts are chosen for their expansion capacity in culture. Nevertheless, cell transplantation has limitations, among them, death of the transplanted cells, during the days following the graft. One possibility to counteract this problem is to enhance the proliferation of the transplanted myoblasts before their fusion with the existing muscle fibers. AG490 is a specific inhibitor of janus tyrosine kinase 2 (JAK2). The hypothesis is to block myoblast differentiation with AG490, thus permitting their proliferation. The inhibition of myoblast fusion by AG490 was confirmed in this study by gene expression and with a myosin heavy chain staining (MyHC). Moreover, cell survival was estimated by flow cytometry. AG490 was found to protect myoblasts in vitro from apoptosis induced by H2O2 or by preventing attachment of cells to their substrate. Finally, in an in vivo model of muscle regeneration, when AG490 was coinjected with the myoblasts their survival was increased by 45% at 5 days after their transplantation.

Keywords: AG490; Apoptosis; Cell therapy; Myoblast; Survival

Document Type: Research Article

DOI: https://doi.org/10.3727/096368912X655028

Publication date: 2012-12-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more