Skip to main content

Open Access Synaptic Plasticity, But Not Hippocampal Neurogenesis, Mediated the Counteractive Effect of Wolfberry on Depression in Rats1

Download Article:
(HTML 85.9 kb)
(PDF 723.8 kb)


Depression is a life-threatening psychiatric disorder characterized with a long-term hypercortisolemia in depressed patients. Based on this clinical feature, hypercortisolemia was mimicked in experimental animals to understand the neuropathogy of depression and to explore new therapeutic strategies. Wolfberry, also known as Lycium barbarum, is a type of common fruit produced in mainland China. Accumulated evidence has shown that the extracts from Lycium barbarum (LBP) had a wide range of neuroprotective effects in various neurogenerative models. However, the antidepressant effect of LBP on depression and its mechanism has not yet been explored. In the present study, we investigated the effects of LBP on counteracting depression using an animal model injected with moderate dose (40 mg/kg) or severe dose (50 mg/kg) of corticosterone (CORT) treatments for 14 days. The results showed that CORT significantly increased immobility time and decreased hippocampal cell proliferation. LBP treatment significantly decreased the immobility time in forced swimming test, a test for the intensity of depressive behaviors, both in 40 and 50 mg/kg CORT stressed rats. Moreover, LBP treatment restored the reduced proliferation of neuroprogentior cells in the hippocampus in 40 mg/kg CORT stressed rats and the neuronal differentiation but not the proliferation in 50 mg/kg CORT stressed rats. After ablation of adult neurogenesis with Ara-c infusion, the beneficial effect of LBP treatment in reducing immobility time was not affected in 40 and 50 mg/kg CORT stressed rats. Golgi staining and Western blotting detection showed that LBP treatment restored the reduced spine density and the decreased level of PSD-95 in the hippocampus caused by 40 and 50 mg/kg CORT, respectively, indicating enhanced synaptic plasticity in the hippocampus. The data showed a novel effect of LBP on reducing depression-like behavior and its antidepressant effect may be mediated by enhanced synaptic plasticity, but not hippocampal neurogenesis.

Keywords: Corticosterone (CORT); Depression; Neurogenesis; Spine density; Wolfberry

Document Type: Research Article


Publication date: December 1, 2012

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more