Skip to main content

Open Access A Novel Marker of Human Endometrial Mesenchymal Stem-Like Cells

Download Article:
(HTML 79.7275390625 kb)
(PDF 668.845703125 kb)
Coexpression of CD140b (PDGFRβ) and CD146 has been used to isolate endometrial mesenchymal stem-like cells (eMSCs), which have a perivascular location. This study aims to evaluate a single marker for purifying eMSCs. Using an antibody panel with novel specificities, we screened human endometrial tissues and stromal cell suspensions by flow cytometry and immunohistochemistry to identify perivascular markers. Sorted subpopulations were examined for colony-forming unit (CFU), self-renewal, and differentiation assays for mesenchymal stem cell (MSC) function. We also transplanted sorted eMSCs under the kidney capsule of superimmunodeficient NSG mice. Magnetic bead selection was compared with flow cytometry sorting (flow sorting) using CFU assay. One novel marker (W5C5) was particularly effective in selecting eMSCs. W5C5+ cells comprise 4.2±0.6% (n = 34) of endometrial stromal cells and reside predominantly in a perivascular location in both basal and functional layers of endometrium. The clonogenicity of W5C5+ cells is significantly greater than W5C5 and unselected cells. W5C5+ cells differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and endothelial cells. W5C5+ cells produce endometrial stromal-like tissue in vivo. In terms of clonogenicity, magnetic bead-selected W5C5+ cells gave rise to significantly higher CFU numbers compared to flow-sorted W5C5+ cells. This study identified W5C5 as a single marker capable of purifying eMSCs possessing MSC properties and reconstituting endometrial stromal tissues in vivo. W5C5 enriches eMSCs to high purity and provides a simple protocol for their prospective isolation using magnetic bead selection rather than flow sorting. W5C5 selection may provide an alternate, readily available autologous source of MSC, obtainable with minimal morbidity using an office endometrial biopsy procedure for future cell-based therapies.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Endometrium; Mesenchymal stem/stromal cells; Prospective isolation; Single maker; Tissue regeneration; W5C5

Document Type: Research Article

Affiliations: The Ritchie Centre, Monash Institute of Medical Research, and Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia

Publication date: 2012-10-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more