Skip to main content

Open Access Mesenchymal Stem Cells Overexpressing Hepatocyte Growth Factor (HGF) Inhibit Collagen Deposit and Improve Bladder Function in Rat Model of Bladder Outlet Obstruction

Download Article:
 Download
(HTML 55.6396484375 kb)
 
or
 Download
(PDF 398.73828125 kb)
 

Abstract:

Bladder outlet obstruction (BOO) caused by collagen deposit is one of the most common problems in elderly male. This study was performed to examine the capability of human mesenchymal stem cells (MSCs) overexpressing hepatocyte growth factor (HGF) to inhibit collagen deposition in rat model of bladder outlet obstruction (BOO). HGF is known for its antifibrotic effect and the most promising agent for treating bladder fibrosis. BM3.B10 stable immortalized human MSC line (B10) was transduced to encode human HGF with a retroviral vector was prepared (B10.HGF). Two weeks after the onset of BOO, B10, and B10.HGF cells were injected into the rat's bladder wall. After 4 weeks, bladder tissues were harvested and Masson's trichrome staining was performed. Transgene expression in HGF-expressing B10 cells was demonstrated by reverse transcriptase polymerase chain reaction and immunohistochemical staining, and the high levels of HGF secreted by B10.HGF cells was confirmed by ELISA. The mean bladder weight in BOO rats was 5.8 times of the normal controls, while in animals grafted with B10.HGF cells, the weight was down to four times of the control [90.2 ± 1.6 (control), 89.9 ± 2.8 (sham), 527.9 ± 150.9 (BOO), 447.7 ± 41.0 (BOO + B10), and 362.7 ± 113.2 (BOO + B10.HGF)]. The mean percentage of collagen area increased in BOO rats, while in the animals transplanted with B10.HGF cells, the collagen area decreased to the normal control level [12.2 ± 1.3, (control), 12.8 ± 1.1 (sham), 26.6 ± 2.7 (BOO), 19.9 ± 6.0 (BOO + B10), and 13.3 ± 2.1 (BOO + B10.HGF)]. The expression of collagen and TGF-b protein increased after BOO, while the expression of HGF and c-met protein increased in the group with B10.HGF transplantation after BOO. Intercontraction interval decreased after BOO, but it recovered after B10.HGF transplantation. Maximal voiding pressure (MVP) increased after BOO, and it recovered to levels of the normal control after transplantation of B10.HGF cells. Residual urine volume (RU) increased after BOO, but the RU increase was not reversed by transplantation of B10.HGF cells. Human MSCs overexpressing HGF inhibited collagen deposition and improved cystometric parameters in bladder outlet obstruction of rats. The present study indicates that transplantation of MSCs modified to overexpress HGF could serve as a novel therapeutic strategy against bladder fibrosis in patients with bladder outlet obstruction.

Keywords: Bladder fibrosis; Bladder outlet obstruction; Cell transplantation; Collagen deposit; Hepatocyte growth factor; Human mesenchymal stem cells

Document Type: Research Article

DOI: https://doi.org/10.3727/096368912X637488

Publication date: 2012-08-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more