Skip to main content

Open Access Bystander Effect on Brain Tissue of Mesoangioblasts Producing Neurotrophins

Download Article:
 Download
(HTML 89.9970703125 kb)
 
or
 Download
(PDF 560.705078125 kb)
 

Abstract:

Neurotrophic factors (NTFs) are involved in the regulation of neuronal survival and function and, thus, may be used to treat neurological diseases associated with neuronal death. A major hurdle for their clinical application is the delivery mode. We describe here a new strategy based on the use of progenitor cells called mesoangioblasts (MABs). MABs can be isolated from postnatal mesoderm tissues and, because of a high adhesin-dependent migratory capacity, can reach perivascular targets especially in damaged areas. We generated genetically modified MABs producing nerve growth factor (MABs-NGF) or brain-derived neurotrophic factor (MABs-BDNF) and assessed their bystander effects in vitro using PC12 cells, primary cultures, and organotypic cultures of adult hippocampal slices. MABs-NGF-conditioned medium induced differentiation of PC12 cells, while MABs-BDNF-conditioned medium increased viability of cultured neurons and slices. Slices cultured with MABs-BDNF medium also better retained their morphology and functional connections, and all these effects were abolished by the TrkB kinase blocker K252a or the BDNF scavenger TrkB-IgG. Interestingly, the amount of BDNF released by MABs-BDNF produced greater effects than an identical amount of recombinant BDNF, suggesting that other NTFs produced by MABs synergize with BDNF. Thus, MABs can be an effective vehicle for NTF delivery, promoting differentiation, survival, and functionality of neurons. In summary, MABs hold distinct advantages over other currently evaluated approaches for NTF delivery in the CNS, including synergy of MAB-produced NTF with the neurotrophins. Since MABs may be capable of homing into damaged brain areas, they represent a conceptually novel, promising therapeutic approach to treat neurodegenerative diseases.

Keywords: Mesoangioblast; Neurodegeneration; Neurotrophin; Stem cells

Document Type: Research Article

DOI: https://doi.org/10.3727/096368912X640475

Publication date: 2012-08-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more