Skip to main content

Open Access Inhibition of Collagen Deposit in Obstructed Rat Bladder Outlet by Transplantation of Superparamagnetic Iron Oxide-Labeled Human Mesenchymal Stem Cells as Monitored by Molecular Magnetic Resonance Imaging (MRI)

Download Article:
(HTML 62.2626953125 kb)
(PDF 3778.9814453125 kb)
Bladder outlet obstruction (BOO) caused by collagen deposit is one of the most common problems in elderly males. The present study is to investigate if human mesenchymal stem cells (MSCs) are capable of inhibiting collagen deposition and improve cystometric parameters in bladder outlet obstruction in rats. Human MSCs were labeled with nanoparticles containing superparamagnetic iron oxide (SPION), and transplanted in rat BOO lesion site. Forty 6-week-old female Sprague-Dawley rats were divided into four groups (group 1: control, group 2: sham operation, group 3: BOO, and group 4: BOO rats receiving SPION-hMSCs). Two weeks after the onset of BOO, 1 × 106 SPION-hMSCs were injected into the bladder wall. Serial T2-weighted MR images were taken immediately after transplantation of SPION-labeled human MSCs and at 4 weeks posttransplantation. T2-weighted MR images showed a clear hypointense signal induced by the SPION-labeled MSCs. While the expression of collagen and TGF-β protein increased after BOO, the expression of both returned to the original levels after MSC transplantation. Expression of HGF and c-met protein also increased in the group with MSC transplantation. Maximal voiding pressure and residual urine volume increased after BOO but they recovered after MSC transplantation. Human MSCs transplanted in rat BOO models inhibited the bladder fibrosis and mediated recovery of bladder dysfunction. Transplantation of MSC-based cell therapy could be a novel therapeutic strategy against bladder fibrosis in patients with bladder outlet obstruction.

29 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Bladder outlet obstruction; Cell transplantation; Collagen; Human mesenchymal stem cells (MSCs); Magnetic resonance imaging (MRI); Superparamagnetic iron oxide nanoparticle (SPION); Transforming growth factor-β (TGF-β)

Document Type: Research Article

Affiliations: Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea

Publication date: 2012-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more