Skip to main content

Open Access Therapeutic Benefit of Treatment of Stroke With Simvastatin and Human Umbilical Cord Blood Cells: Neurogenesis, Synaptic Plasticity, and Axon Growth

Download Article:
(HTML 64.6728515625 kb)
(PDF 20110.8359375 kb)


The therapeutic efficacy of cell-based therapy after stroke can be enhanced by making the host brain tissue more receptive to the administered cells, which thereby facilitates brain plasticity. We hypothesized that simvastatin increases human umbilical cord blood cell (HUCBC) migration into the ischemic brain and promotes brain plasticity and neurological functional outcome after stroke. Rats were subjected to 2-h middle cerebral artery occlusion (MCAo) and administered subtherapeutic doses of simvastatin (0.5 mg/kg, gavaged daily for 7 days), HUCBCs (1 × 106, one time injection via tail vein), or combination simvastatin with HUCBCs starting at 24 h after stroke. Combination treatment of stroke showed an interactive effect in improvement of neurological outcome compared with simvastatin or HUCBC monotherapy groups. In addition, combination treatment significantly increased brain-derived neurotrophic factor/TrkB expression and the number of engrafted HUCBCs in the ischemic brain compared with HUCBC monotherapy. The number of engrafted HUCBCs was significantly correlated with functional outcome (modified neurological severity score). Combination treatment significantly increased neurogenesis and synaptic plasticity in the ischemic brain, and promoted neuroblast migration in cultured subventricular zone explants. Using primary cultured neurons (PCNs), we found that combination treatment enhanced neurite outgrowth compared with nontreatment control, simvastatin or HUCBC supernatant monotherapy. Inhibition of TrkB significantly attenuated combination treatment-induced neurite outgrowth. Our data indicate that combination simvastatin and HUCBC treatment of stroke increases BDNF/TrkB expression, enhances HUCBC migration into the ischemic brain, amplifies endogenous neurogenesis, synaptic plasticity and axonal growth, and thereby improves functional outcome after stroke.

Keywords: Human umbilical cord blood cells (HUCBCs); Neurogenesis; Simvastatin; Stroke; Synaptic plasticity

Document Type: Research Article


Affiliations: Department of Neurology, Henry Ford Hospital, Detroit, MI, USA

Publication date: 2012-05-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more