Skip to main content

Open Access Combined Mesenchymal Stem Cell Sheets and rhBMP-2-Releasing Calcium Sulfate‐rhBMP-2 Scaffolds for Segmental Bone Tissue Engineering

Download Article:
(HTML 68.9 kb)
(PDF 14,297.8 kb)
Repair of segmental bone defects remains a major challenge for orthopedic surgeons. This study aimed to investigate whether recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium sulfate (CS) combined with mesenchymal stem cell (MSC) sheets could accelerate bone regeneration in ulnar segmental defects of rabbits. In vitro, the osteogenic differentiation of MSCs cultured on rhBMP-2-loaded CS was investigated. Forty complete 1.2-cm bone defects were treated with CS (group A), rhBMP-2-loaded CS (group B), MSC sheet-wrapped CS (group C), and MSC sheet-wrapped rhBMP-2-loaded CS (group D). At 4 and 8 weeks after implantation, the samples were treated by X-ray, microcomputed tomography, and histological observation. The rhBMP-2 could be released from the rhBMP-2-loaded CS scaffolds and maintain its bioactivity. The alkaline phosphatase (ALP) of MSCs cultured on rhBMP-2-loaded CS was significantly higher than that of CS at both 7 and 14 days (p < 0.05). The defects treated with MSC sheet-wrapped rhBMP-2-loaded CS showed significantly higher scores by X-ray analysis and more bone formation determined by both histology and microcomputed tomography than the other three groups at both 4 and 8 weeks after implantation (p < 0.05). No significant difference in X-ray score and bone formation was found between groups B and C, both significantly higher than group A (p < 0.05). The results suggested that MSC sheet-wrapped rhBMP-2-loaded CS may be an effective approach to promote the repair of segmental bone defects and has great potential for repairing large segmental bone defects in clinic.

41 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Bone regeneration; Calcium sulfate; Mesenchymal stem cells (MSCs); Osteogenic differentiation; Recombinant human bone morphogenetic protein (rhBMP-2)

Document Type: Research Article

Affiliations: Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Publication date: 01 April 2012

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more