Skip to main content

Open Access Targeted Intra-arterial Transplantation of Stem Cells to the Injured CNS Is More Effective Than Intravenous Administration: Engraftment Is Dependent on Cell Type and Adhesion Molecule Expression

Download Article:
(HTML 64.833984375 kb)
(PDF 2367.388671875 kb)
Stem cell transplantation procedures using intraparenchymal injections cause tissue injury in addition to associated surgical risks. Intravenous cell administration give engraftment in parenchymal lesions although the method has low efficacy and specificity. In pathological conditions with inflammation, such as traumatic brain injury, there is a transient up-regulation of ICAM-1 and VCAM-1 which might provide environmental cues for migration of stem cells from blood to parenchyma. The aim of this study was to i) analyze the effect of intra-arterial administration on cellular engraftment, ii) compare engraftment and side effects between three different stem cell systems, and iii) analyze gene expression in these three systems. We performed specific intra-arterial transplantations with human mesenchymal stem cells (hMSCs), human neural progenitor cells (hNPCs), and rat neural progenitor cells (rNPCs) in a rat model of traumatic brain injury. These results were compared to the intravenous route for each cell type, respectively. Analysis of engraftment and recipient characterization was performed by immunohistochemistry. We further characterized the different types of cells by microarray and RT-qPCR analysis. Specific intra-arterial transplantations produced significantly higher engraftment compared to intravenous transplantation with hMSCs and rNPCs. No engraftment was detected after intra-arterial or intravenous administration of hNPCs. Characterization of integrin expression indicated that CD49dVCAM-1 and possibly ICAM-1 interactions through CD18 and CD11a, respectively, are important for engraftment after intravascular cell administration. No side effects, such as thromboembolic complications, were detected. When translating stem cell therapies to clinical practice, the route of transplantation and the properties of the cell lines (homing, diapedesis, and migration) become important. This study supports the use of selective intra-arterial transplantation for improving engraftment after traumatic brain injury. In addition, we conclude that careful analysis of cells intended for local, intra-arterial transplantation with respect to integrin expression is important.

28 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Endovascular; Human mesenchymal stem cells (hMSCs); Human neural progenitor cells (hNPCs); Rat neural progenitor cells (rNPCs); Transplantation; Vascular cell adhesion molecule-1 (VCAM-1)

Document Type: Research Article

Affiliations: Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

Publication date: 2012-01-01

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more