Skip to main content

Open Access Growth Ability and Repopulation Efficiency of Transplanted Hepatic Stem Cells, Progenitor Cells, and Mature Hepatocytes in Retrorsine-Treated Rat Livers

Download Article:
(HTML 71.8 kb)
(PDF 12,541.8 kb)


Cell-based therapies as an alternative to liver transplantation have been anticipated for the treatment of potentially fatal liver diseases. Not only mature hepatocytes (MHs) but also hepatic stem/progenitor cells are considered as candidate cell sources. However, whether the stem/progenitor cells have an advantage to engraft and repopulate the recipient liver compared with MHs has not been comprehensively assessed. Therefore, we used Thy1+ (oval) and CD44+ (small hepatocytes) cells isolated from GalN-treated rat livers as hepatic stem and progenitor cells, respectively. Cells from dipeptidylpeptidase IV (DPPIV)+ rat livers were transplanted into DPPIV livers treated with retrorsine following partial hepatectomy. Both stem and progenitor cells could differentiate into hepatocytes in host livers. In addition, the growth of the progenitor cells was faster than that of MHs until days 14. However, their repopulation efficiency in the long term was very low, since the survival period of the progenitor cells was much shorter than that of MHs. Most foci derived from Thy1+ cells disappeared within 2 months. Many cells expressed senescence-associated β-galactosidase in 33% of CD44-derived foci at day 60, whereas the expression was observed in 13% of MH-derived ones. The short life of the cells may be due to their cellular senescence. On the other hand, the incorporation of sinusoidal endothelial cells into foci and sinusoid formation, which might be correlated to hepatic maturation, was completed faster in MH-derived foci than in CD44-derived ones. The survival of donor cells may have a close relation to not only early integration into hepatic plates but also the differentiated state of the cells at the time of transplantation.

Keywords: CD44; Cellular senescence; Maturation; Sinusoidal endothelial cells; Small hepatocytes; Thy1

Document Type: Research Article


Affiliations: Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan

Publication date: January 1, 2012

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more