Skip to main content

Open Access Intratracheal Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Dose-Dependently Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats

Download Article:
(HTML 69.6 kb)
(PDF 349.1 kb)
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this preclinical translation study was to optimize the dose of human UCB-derived MSCs in attenuating hyperoxia-induced lung injury in newborn rats. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (95% oxygen) or normoxia after birth for 14 days. Three different doses of human UCB-derived MSCs, 5 × 103 (HT1), 5 × 104 (HT2), and 5 × 105 (HT3), were delivered intratracheally at postnatal day (P) 5. At P14, lungs were harvested for analyses including morphometry for alveolarization, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining, myeoloperoxidase activity, mRNA level of tumor necross factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β), human glyceradehyde-3-phosphate dehydrogenase (GAPDH), and p47 phox , and collagen levels. Increases in TUNEL-positive cells were attenuated in all transplantation groups. However, hyperoxia-induced lung injuries, such as reduced alveolarization, as evidenced by increased mean linear intercept and mean alveolar volume, and increased collagen levels were significantly attenuated in both HT2 and HT3, but not in HT1, with better attenuation in HT3 than in HT2. Dose-dependent human GAPDH expression, indicative of the presence of human RNA in lung tissue, was observed only in the transplantation groups, with higher expression in HT3 than in HT2, and higher expression in HT2 than in HT1. Hyperoxia-induced inflammatory responses such as increased myeloperoxidase acitivity, mRNA levels of TNF-α, IL-1β, IL-6, and TGF-β of the lung tissue, and upregulation of both cytosolic and membrane p47 phox , indicative of oxidative stress, were significantly attenuated in both HT2 and HT3 but not in HT1. These results demonstrate that intratracheal transplantation of human UCB-derived MSCs with appropriate doses may attenuate hyperoxia-induced lung injury through active involvement of these cells in modulating host inflammatory responses and oxidative stress in neonatal rats.

40 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: Animal; Bronchopulmonary dysplasia; Cell transplantation; Inflammation; Newborn

Document Type: Research Article

Affiliations: Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Publication date: 01 November 2011

More about this publication?
  • Cell Transplantation publishes original, peer-reviewed research and review articles on the subject of cell transplantation and its application to human diseases. To ensure high-quality contributions from all areas of transplantation, separate section editors and editorial boards have been established. Articles deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, among others. Basic clinical studies and immunological research papers are also featured. To provide complete coverage of this revolutionary field, Cell Transplantation will report on relevant technological advances, and ethical and regulatory considerations of cell transplants. Cell Transplantation is now an Open Access journal starting with volume 18 in 2009, and therefore there will be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow work to be disseminated to a wider audience and also entitle the corresponding author to a free PDF, as well as prepublication of an unedited version of the manuscript.

    Cell Transplantation is now being published by SAGE. Please visit their website for the most recent issues.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more